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One of the biggest challenges in
pulsar astronomy is o understand the
magnetospheric processes that
generate pulsar radio emission and
its polarisation.

In order to study magnetospheric
emission one needs to understand
the distorting effects of the
intervening medium.
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The usefulness of combining multi-frequency pulsar data has been recently shown in LOFAR
observations of bright pulsars (Hassall et al. 2012; Hassall et al. 2013).
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It was suggested that radio emission is generated within a narrow altitfude range
of ~100 km (compare with Ri.c~10,000 km)



Polarisation reflects the geometry of pulsar magnetospheric emission.
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In the open field-line region, radio emission is produced by magnetospheric currents running along
the magnetic-field lines.
The emission is polarised in the planes defined by the dipolar magnetic-field geometry.

Rotating Vector Model (RVM):

The parallactic rotation of the tangent to the dipolar magnetic-field lines, as the emission cone
sweeps across the observers line of sight, is observable as a Polarisation Position Angle (PA) sweep

across the pulse (an 'S’ curve).
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The simple, geometric representation of pulsar polarisation fails to explain observations in

several cases.
Noutsos et al. (in preparation)
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sharp local minima can be seen in L that do
correspond to changes in the total intensity

they almost always appear coincident with
steep PA gradients.
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Multi-frequency Polarisation

As with the total intensity, multifrequency polarisation data are necessary for understanding not
only magnetospheric processes but also how ISM affects polarisation.
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Until LOFAR, most polarisation profiles below
200 MHz have been mostly the product of
targeted work on individual sources.

In many cases the profile quality is much

lower than that from LOFAR.
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Multi-frequency Polarisation

As with the total intensity, multifrequency polarisation data are necessary for understanding not
only magnetospheric processes but also how ISM affects polarisation.
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Our LOFAR polarisation survey (221 pulsars; | b |>10°) will extend to lower frequencies the high-quality
polarisation information that is available from higher-frequency polarisation surveys (Cycles 1 & 2).




Polarisation Calibration



Before we can detect polarisation of astrophysical origin, we need to make sure that the
insfrumental effects are corrected for.

Parallactic source rotation

pulsar As the LOFAR beam tracks the pulsar across
the sky, it is distorted due to the non-uniform
1L sensitivity of the dipoles as a function of
e e ol \ azimuth and altitude.
\ The signal is projected onto the ground

screen. At any elevation other than 90°, the
% signal is projected onto a non-orthogonal

frame containing the polarisation feed:s.

LOFAR station



Before we can detect polarisation of astrophysical origin, we need to make sure that the
insfrumental effects are corrected for.

Parallactic source rotation

pulsar As the LOFAR beam tracks the pulsar across
the sky, it is distorted due to the non-uniform
1L sensitivity of the dipoles as a function of
e e s \ azimuth and altitude.

\ The signal is projected onto the ground
screen. At any elevation other than 90°, the

% signal is projected onto a non-orthogonal

frame containing the polarisation feed:s.
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Polarisation calibration — Instrument

Beam calibration is performed using the Hamaker formalism + EM simulafion software.

For a certain direction (azimuth,alfitude) and observing frequency, the Hamaker model can be
described as a 2x2 complex Jones maitrix.
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Finally, the inverse response is then applied to the measured
complex voltages, to recover the original polarisation signal.
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Flux

Sensitivity as a function of (a, 9):

We observed 4 bright pulsars, PSRs B0O834+06, B1929+10, B1953+50 and B2217+4/, at various HA
with the LOFAR core. The sensitivity was expressed as the RMS value of the off-pulse flux
density, which was measured after calibrating with the model.

sensitivity drops to half for ¢ ~ 30°
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Pulse Phase * The sensitivity increases with elevation as ~sin~'4(elevation).

e Above 30° elevation the sensitivity remains >50% of its zenith value.
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Polarisation Profiles & Data Analysis



Sample*

HBA Core Observations

16 non-recycled PSRs

PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR
PSR

B0031-07
B0136+57
B0809+74
B0823+26
B0834+06
B0950+08
B1133+16
B1237+25
B1508+55
B1911-04
B1919+21
B1929+10
B1953+50
B2111+46
B2217+47
B2224+65

4 MSPs

PSR J0034—-0534
PSR J1012+5307
PSR J1022+1001
PSR B1257+12

* Pulsars chosen for their high polarisation fractions,
based on 230 —1600 MHz data (Gould & Lyne 1998)

Setup

e Full HBA core: 24 stations coherently summed
e 8-bit mode; 96 MHz bandwidth

e All pulsars observed near transit

e Elevations: 15 PSRs (¢ > 45°), 5 PSRs (¢ > 30°)

Pre-processing

e Coherent dedispersion
e Polarisation calibration

e RFl excision (no more than 5% of the data was zero-weighted)
e Faraday correction
e Time/Frequency-averaged full-Stokes profiles were produced.
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The measured PA profiles are not absolutely calibrated, George!

Each PA can be trusted with respect to the rest but not as the intrinsic angle of the generated linear polarisation.
Absolute calibration requires:
* A reference calibration signal (e.g. 100% polarised signal, injected at 45° between the linear feeds).
... to calculate the gain and phase differences between the linear feeds.
e An observation of areference source with a known PA
... to estimate the PA rotation infroduced by the different paths of the X and Y signals through the electronics chain.




Birefringence has been put forward as an explanation for

. Nicol Polarizing Prism
e« OPM jumps ’ <
. . . . . Ordinary —
* Infrinsic depolarisation and s S .
e Pulse broadening y O-mode |/ X-mode

McKinnon 1997

U larized .
White Light O-mode dominates

It is assumed that pulsar polarisation is produced in two
orthogonal propagation modes (OPMs), the Ordinary

(O) and Extraordinary (X). X
gf no polarisation
¢
At each pulse phase we observe the sum of those modes. e omnes
The PA corresponds to the orientation of the dominant mode. I
We have tested 3 predictions of birefringence:
e Depolarisation towards high frequencies, as the polarisation ' —— depolarisation

modes overlap.

* Pulse broadening towards low frequencies, as the polarisation
modes’ beams diverge.

* Increasing number of OPM jumps fowards low frequencies, as the
observer’s line of sight traverses the divergent polarisation beams.
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60% show pulse broadening towards low frequencies.
40% show depolarisation towards high frequencies.

50% show more OPM jumps towards low frequencies.




ISM scattering depolarises the pulsar profiles and flattens PA profiles.
e.g. Komesaroff, Hamilton & Ables 1972; Li & Han 2003; Noutsos et al. 2009; Karastergiou 2009
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Variations of RM as a function of pulse phase
has been associated with scattering.

Noutsos ef al. 2009; Karastergiou 2009

ARM has been qualitatively associated with
the APA across the profile.
simulations by Karastergiou

Scattering causes a differential PA rotation as
a function of frequency and phase that is
indistinguishable from Faraday rotation.
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A qualitative trend between DM and ARM is
seen in 1.4-GHz Parkes data.




Rotation Measure (rad m™2)

P.A. (deg.)

LOFAR data gives us the opportunity to investigate the
low frequencies, where scattering is much stronger (~

effect of phase-resolved RM variations at

4).

At LOFAR frequencies, the increased RM precision provides higher sensitivity 1o small RM variations

(orm ~ T1/AA%).
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the amount of scafttering.

So, contrary to expectation the magnitude of the RM variations does not scale with




We tested these calculations with 1.4 GHz and 150 MHz data.
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logY = —0.16(21) + 0.91(8) log X

The data appear to confirm the relation between RM and PA gradients between 150 MHz and 1.4 GHz.

An appreciable scatter can be seen.



In the framework of aberration/retardation (A/R), the field lines are bent forward due to
relativistic effects (Blaskiewicz, Cordes & Wasserman 1991).

The maximum of the emission — generated at a finite alfitude — precedes the closest
approach to the magnetic pole, i.e. the steepest PA gradient.
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Summary & Conclusions
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e Birefringence has been proposed as the explanation for the evolution of the linear polarisation and
pulse width across several octaves in frequency. Our observations offer only partial support for the
predicted effects of birefringence.

In some cases, such investigation is muddled by scattering.

e Scaitering of polarised profiles is expected to be much sironger at LOFAR frequencies.
However
— Phase-resolved RM variations appear much weaker at 150 MHz.

— The magnitude of these variations scales as 1/A2 for a given PA gradient. Data between 1.4 GHz
and 150 MHz appear to confirm this prediction.

e Emission altitudes based on A/R effects on polarisation are consistent with previous claims that
pulsar emission is generally produced over a ~100 km altitfude range above the polar caps.



